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I.-THE PRINCIPLES OF PROBLEMATIC INDUCTION. 

THE PRESIDENTIAL ADDRESS. 

By C. D. BROAD. 

(1) DEFINITIONS OF INDUCTIVE ARGUMENTS. 

BY Problematic Induction I mean any process of reasoning which 
starts from the premise that all, or a certain proportion of, observed 
S's have had the characteristic P, and professes to assign a 
probability to the conclusion that all, or a certain proportion of, 

S's will have this characteristic. It is assumed that no intrinsic 
or necessary connexion can be seen between the characteristics 
S and P. Where such a connexion can be seen, the fact that all 
observed S's have been found to be P can hardly be called a 
logical premise; it is at most a psychological occasion which 
stimulates the observer to intuit the intrinsic connexion between 
S and P. The latter process is called Intuitive Induction by 
Mr. Johnson, and I do not propose to consider it here. It is 
generally admitted that, when intuitive induction is ruled out, 
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premises of the kind which we are considering can lead only to 
conclusions in terms of probability. This has been argued 
independently bv Mr. Keynes and myself, and I am going to 
assume that it is true. 

We can now classify Problematic Iniductions as follows: 
(1) We may divide them up according to the nature of their 
premises. These may be (1 1) of the form, " All observed S's 
have been P," or (1 2) of the form, ' A certain proportion of the 
observed S's have been P." Then (2) we may divide them up 
according to the nature of the proposition whose probability they 
profess to evaluate. This may be (2 1) of the form, " All S's 
whatever are P" ; or (2 2) " The next S to be observed will be 
P ; or (2 93) A certain proportioin of the total number of S's 
are P." The following are the most important types of 
Problematic Induiction: (A) If we combine a premise of the 
form (l11) with a conclusion about a propositioin of the form (2 1), 
we have what I will call Nomic Generalization, because it professes 
to assign a probability to a general lav from an observed 
regularity. (B) Any argument whose conclusion is about a 
proposition of the form (2 2) we mav call an Eduction, following 
Mr. Johnson. There will be two kinds of eduction, according to 
whether the premise is of the form (11l) or of the form (12). 
These may be called respectively No?nic Eductions and Statistical 
Eductions. Finally (C), if we combine a premise of the form (1 2) 
with a conclusion about a proposition of the form (2 3), we get 
what may be called, in a wide sense, a Statistical Generalization. 
(This term would sometimes be confined to the special case in 
which the proportion in the premise is the same as the proportion 
which is considered in the conclusion.) 

(2) THE LOGICAL PRINCIPLES OF THE ARGUMENT. 

I shall begin by considering artificially simplified cases. These 
will be of two kinds, viz., (a) the drawing of counters from a bag, 



THE PRINCIPLES OF PROBLEMATIC INDUCTION. 3 

and (b) the throwing of a counter whose opposite sides are of 

different colour. I shall try to state clearly both the principles 
of logic and probability that are presupposed and the assump- 
tions about equiprobability that are made, and to show exactly 
where each enters into the argument. The only satisfactory way 
of doing this is to work out the arguments in detail. 

(24) Principles of Probability and Formal Logic. 

The following are the only ones that are needed: (1) If p and q 
be logically equivalent propositions, then p/h (i.e. the probability 
of p on the assumption that h is true) q/h, whatever h may be. 
This may be called the Principle of Equivalence. (2) If p and q 
be any two propositions, then (p. q)/h (q/h) (p/qh) = 

(p/h) (q/ph).* Here p . q, q. h, and p . h are conjunctive proposi- 
tions-i.e. respectively, " p-and-q," " q-and-h," and " p-and-h." 
This may be called the Cotjunctive Principle. (3) If p and q be 
two propositions which cannot both be true, then (pvq)/h p/lh 
+ q/h. Here pvq means the disjunctive proposition " either-p- 
or-q." This may be called the Disjunctive Principle. (4) If p be 
any proposition, and q1 .... q. be any set of mutually exclusive 
and collectively exhaustive alternant propositions, then p.-: 

pq1. v . pq2 . v. pqn. This can be called the Rule of Expansion. 

(2 2) Bag Problems. 

In these we shall suppose that there is a bag which is known to 
contain n counters which are qualitatively indistinguishable 
except in respect of their colours. They are to be drawn out one 
by one, the colour is to be noted, and the counter is not to be 
replaced. 

* We constantly use what is an immediate consequence of this, viz., 

plh) (q/ph) 
plqh=- (qlhA 

A 2 
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(2,21) Nomic Eduction applied to the Bag. 

Suppose that m counters have been drawn, and that all have 
been found to have a certain colour, e.g., red. What is the 
probability that the next counter to be drawn will be red ? 

Let us denote the proposition that the sth counter drawn is 
red by Ps. Let us denote our original information about the 
contents of the bag and the method of drawing by h. For 
shortness let us denote the conjunctive proposition P1P2 - Pm 
by rm. Then we are asked to evaluate the probability 

Pm + /Tmrh 
By the Conjunctive Principle (TmP,n + 1)/h - (Tm/h) (Pm + 1/rin) 

(TmPm + 1)lh rm + lh 
Pm + 1r,h-- r,/h rm/h . . . . . .(1) 

Now there might originally have been in the bag either 0 or 1 
or 2 or .... n red counters. Let us denote these n + 1 mutually 
exclusive and collectively exhaustive alternant propositions by 

Ro, RJ) ... Rn respectively. It is evident that rm + 1 is incon- 
sistent with there having been originally less than en + 1 red 
counters in the bag. Therefore combinations such as rm + 1 R 
vanish. 

By the Rule of Expansion then we shall get 

rm + :rm + 1 Rm -+ 1 V ... rm + 1 Rn 
s fn 

by the Principle of Equivalence, r + 1/hI E (rm + 1R,)/h. 
s_m, + I 

By the Conjunctive Principle this is equal to 
s = n 

E (Rs/h) (rm + 1/Rsh). 
s m+ 1 

Now a precisely similar argument will obviously lead to the 
result that 

s - n 
Tm/ h E (Rsih) (rp /R,h). 

s = m 
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If we now substitute these values in equation (1), we get 

s = n 
E (R/I/h) (Tm + /Rh) 

PM + 1rm 
r (2) 

E (R8/h) (rrm!Rsh) 
s = rn 

We must next evaluate terms of the form rm + 1/RA. By 
definition rm + 1/R]h (P1P2 pmPm + 1)/R8h. By repeated 
application of the Conjunctive Principle it follows that 

rT, L /JRsh (pl/Rsh) (p2/R8hpl) (p3/Rshplp2)... (Pm + 1/Rshp. Pm) 

(pl/R8h) (P2/R8hrl) (p3/REhr2) ... (Pm + 1/Rshrm). 

Now if there were originally s reds, and if any one of the n 
counters was equally likely to be drawn, it is evident that 

S 
pl/R,h -. At the next drawing there are n 1 counters. If 

there were originally s reds, and if the one which has been drawn 
and not replaced was red, there are now s - 1 counters. If any 
one of the n - 1 remaining counters is equally likely to be drawn 
at the second drawing, it is evident that 

s- 
P2/R,hi-1 1 

i - 1 

s s-1ls-2 s-rn 
So, on these assumptions, r, 1/IR,h - ;n-In-2 n- n 

We must now explicitly notice that we have been making an 
assumption at this point about Equiprobability. This I will call 
the First Premise about Equiprobability. 

It is evident that, on the same assumption, 

ss-1 s- r+1 

m!Rsh n n-1 n -r+ 1m 

If we substitute the values just obtained in the numerator and 
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denominator of the right-hand side of equation (2) we get 
s fn 

? (Rj /h) s(s - 1) ... (s - rn) 

Pm+l/rnh 1 sm+ .(3) n-rn s n 
E (R, 1h) s (s l ) ..(s-m+l) 

s -m 

This is the fundamental formula for Nomic Inductioni in the 
case of drawing counters from bags. It is evident that we can 

get no further unless we can evaluate the terms R,/h. These are 

the antecedent probabilities of the various alternative possible 
original constitutions of the contenits of the bag. Now some 

logicians and mathematicians, notably Laplace, have at this 

point argued as follows. They have assumed that, when nothing 
is known about the contents of the bag except that it origin- 
ally contained n counters qualitatively indistinguishable save in 

respect of their colours, the n + 1 possible alternatives-viz., 
that it contains 0 or 1 or .... n reds (e.g.)-are equally probable. 
And they defend this on the authority of the Principle of Indiffer- 
ence. On this assumption the factors R,/h cancel out on the 

right-hand side of equation (3), and we get 

s (s -1) ...(s -m) 
pm + 1/rmh mn 1 1 

E s (s 1)...(s- m+1) 
m 

m + 
and it can easily be shown that this is equal to 2 

mn +2 

This is Laplace's First Rule of Succession. 

Now this application of the Principle of Indifference has been 
severely and rightly criticised by Mr. Keynes. A simple way of 
seeing that it must be wrong is to put m = 0. We then reach the 
conclusion that, before any counter is drawn from a bag, the 

probability that the first to be drawn will be red is 2. But exactly 
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the same reasoning will show that the antecedent probability 

that the first to be drawn will be blue is 2 Since no counter can 

be both blue and red it would follow, by the Disjunctive Principle, 
that the probability that the first to be drawn is either red or 

1 1 . 
blue must be 2 + ,2 i.e., that it is certain to be one or the other, 

and this is plainly absurd. Nor is it difficult to see why Laplace's 
application of the Principle of Indifference is wrong. A set of 
counters c1 .... Cn which are all red can arise only in one way; 
but a set of counters cl .... cn in which one is red can arise in n 
ways, since it can arise through cl being red or c2 being red or 
... cn being red. Thus the various alternatives Ro, R1, ... R. 
are not all exactly alike in internal complexity, for each is 
analysable into various numbers of sub-alternatives. It is there- 
fore illegitimate to apply the Principle of Indifference to them. 
We must therefore reject Laplace's Rule. 

This throws us back on the original question. Can we 
evaluate the probabilities R,/h ? If we cannot, the formula (3), 
though valid, is useless. Let us try the following way. It is 
known that any counter has some one colour, including for this 
purpose black and white as colours. Let us suppose that there 
are v distinguishable colours, including black and white. Then 
any counter taken at random is equally likely to have any one of 
these v colours. Let us call this the Second Premise about 
Equiprobability. It must have one and can have only one. 
Hence the antecedent probability that any counter chosen at 

random shall have a certain assigned colour-e.g., red-is!- 

Now a set of n counters containing exactly s red ones can arise 
in lC8 ways. A typical case might be written 

YH Y2 prop Ys i Ys + 1 " Ys + 1 r"a s Yn+ 
HIere y, is the proposition, " the counter Cs is red ";and t5 + I 
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is the proposition the counter "QC + 1 is not red." It is obvious 

that the probability of any such typical case is (-) (1- 

since the fact that one counter is or is not red is irrelevant to the 

question whether any other counter is or is not red. It follows 

that R8/h =nCs() (I - ) 

If we substitute these values in the formula (3) and do a little 

straightforward algebra, we get 

(v - y 
s 

1 - m+l (n s)!(s n-l)! 
Pm + ilrmh = _ n X (v l)n-8 

(n .-s)! (s-rn)! 

It is easy to prove that the sum in the numerator comes to 
vn-nt-1 

and that the sum in the denominator comes to 
(n - rn-i 

(n Ae thus reach the extremely unsatisfactory (n - i) ! y 

conclusion that 

Pin ? /llrh - 

i.e., that although all the counters tha.t we draw are found to be 

red, the probability that the next to be drawn will be red 
remains exactly what it was when no counters had been drawn. 

(222) Nomic Geiieralization applied to the Bag. 

It is now easy to pass from Nomic Eductioil to Nomic 
Generalization about the bag. The question now is: Given that 
mi counters have been drawn, and that all have been red, what is 

the probability that all the counters in the bag are red ? This 
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simply means that we have to evaluate R1/rmlh. By the Conjunc- 
tive Principle we can write 

Rn/rik (Rn/h) (rm./Rnh) 

But r,!/Rnh = 1, since the first m to be drawn mnust be red if all 

in the bag are red. Hence R,,/rkh - R/!h Making use of the 

Principle of Equivalence and the Conjunctive and Disjunctive 
Principles, we get 

RRn/!mh =..... . (4) s n 
E (R,lh) (r.IR,h) 

s _ m 

This is the fundamental formula for Nomic Generalization. On 
the false Laplacean assumption that all terms of the form R8/h 
are equal, it is easy to prove that the fraction on the right-hand 

side of (4) becomes + I 
. This is Laplace's Second Rule of 

Sttccessiont. On the true assumption about equiprobability-viz., 
that any individual counter is equally likely to have any one of 
the v distinguishable colours-it is easy to prove that the 

'\n-m fraction on the right-hand side of (4) becomes (j). Thus, 

even on the true assumptioni, the probability of the law that all 
the counters in the bag are red does increase with every counter 
which is drawn and found to be red, though the probability that 
the next counter to be drawn will be red does not increase. 

(2 23) Statistical Generalization applied to the Bay. 

It remains to consider the most general problem, viz., that of 
Statistical Generalization, for the artificial case of the bag of 
counters. The problem may be stated as follows. We have 
drawn en counters and have found that V. of them were red and 
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the rest non-red. What is the probability that there were 

originally x red counters in the bag ? We will denote the proposi- 

tion that m counters have been drawn and that t of them are 
red by r,,m. Then the probability which we have to evaluate is 

R.1r,w,.h. Applying the same principles as before, we easily find 
that 

R !r ,mh _ (R-/h) (r,m/IRxh) 
xi 'Um s= n -m + A E (Rslh) (r,.mlRsh) 

s =, 

The limits of the summation in the denominator are determined 

by the fact.that there cannot have been less than X reds, since 

,t reds have been drawn, and there cannot have been more than 

n - m + -i reds, since n - , non-reds have been drawn. 
It remains to evaluate r,.m,/Rsh. The t reds which have been 

found in the mn counters that have been drawn might have been 
presented in "'01, different orders. We are justified in assuming, 
on the grounds of the Principle of Indifference, that any order 
of presentment is as likely as any other, with respect to the 

available data. This constitutes the Third Premise about 
Equiprobability. It was not needed in the two previous problems. 

Hence, to find the required probability, we may take a single 
typical order of presentment, e.g., r,, ? 1 . .P, and multiply 

the probability of this by m'nC. Now it is evident that 

? 1 * m)/Rsh 

s s - 
..s- +11s-- 0L _,- S_Ll(S ) *(1 S-~ 

nn-1 n +1 n - n-en+1. 

So we finally reach the equation 

(5) ^ . . Rxjr,, h 
(R,,Ih) x (x 1) ..(x-1i + 1) (n x) (n -x - 1 

... (n -x - m + t+l 
s = n - mn ? A 

(R,h)s (s - 1) ... (s -m+ )(n -s)(n s 
s = 

A..(n- s - m+ At+ 1) 
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This is the fundamental formula for Statistical Generalization 
as applied to the case of the bag. On the false Laplacean 
assumption that all probabilities of the form R,/h are equal, it 
is easy to prove that the most probable value of x is such that 
n 

i,.e., that the most probable proportion of reds in the 
x m 

whole contents of the bag is the same as the proportion of reds in 
the set of counters drawn and observed. On the true assumption 

that R/h "US () 1 _ n - s it is easy to show that the most 

probable value of x is such that x - _ _.e., that the most 
n-m IV 

probable proportion of reds among the remaining n - ii counters 

isI. Now this is exactly what was the most probable proportion 
IV 

of reds in the bag before any counters were drawn, for the 
antecedently most probable number of reds is that valtue of s 

which makes S ) (i 1 ) - a maximum, and this is the 

nearest integer to 1. So, no matter how many counters have been 

drawn, and no matter what may have been the proportion of 
reds found among them, the proportion of reds which was 
antecedently most probable for the whole contents of the bag will 
still be the most probable proportion of reds in the remainder. 
It would be hard to imagine a less satisfactory result. 

(2.24) Summary. 

To sum up. We have seen exactly how the formal principles 
of probability and logic enter into the inductive arguments about 
the bag. We have seen that in every case two different premises 
about equiprobability are needed, one in the general course of 
the argument and another in order to evaluate the terms R8/k. 
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We have seen that, in Statistical Generalizations, a third premise 

about equiprobability is needed. Finally, we have seen that the 
Laplacean assumption for evaluating R,/h is certainly false, and 
that, when the true assumption is made, the inductive argument 
fails to establish any high probability. 

(2.3) Problems on Throwing a Counter. 

We here suppose that there is a single counter which is 
geometrically regular, and has a red face and a white face. I 
shall suppose that, for all we know at the outset, this counter may 

be loaded to any extent either in favour of red or in favour of 

white. 
We must first define the notion of "loading." I shall say 

that " the counter is loaded to a degree s in favour of red," if, 
and only if, the antecedent probability of its turning up red 
would be s for anyone who knew in detail how it was constructed. 
I will denote this proposition by R. It is evident from the 
geometrical fairness of the counter and our complete absence of 

information as to its loading that R,/h = Wjh. Again, if the 
counter be so constructed that the antecedent probability of its 

turning up red is s for anyone who knows its construction, it is 

evident that the antecedent probability of its turning up white 
is 1 - s for the same person. Hence R,/h W - I/h. AVe can 
therefore confine ourselves to loading for red, for we shall cover 
all the probabilities if we let s range from 0 to 1. That is, 
1 

E Rlh- 1. 
0 

(2.31) Statistical Eduction applied to the Counter. 

Let us now suppose that this counter is thrown n times, and 

that, on m occasions, it is found to turn up red. What is the 
probability that the next throw will be red ? It is easy to prove 
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by exactly the same methods as we used for the bag that 
1 

Pn+/m,n A ? -....0 (6) 

E (R,/h) Sm (1 s) - 
0 

This is the formula for Statistical Eduction in the case of the 
counter. More complicated formulh could be got for a geometri- 
cally regular die with v sides and a different colour on each, 
but.the principles and premises would be of exactly the same 
kind. 

(2.32) Statistical Generalization applied to the Counter. 

The most general formula would be that for Statistical 
Generalization. Here we suppose that the counter has been 
thrown n times, and that red has turned up mn times. It is now 
to be thrown a further nt' times, and we ask: " What is the proba- 
bility that red will turn up m' times in these further n' throws ? 
It is easy to prove by the same methods as before that 

1 

E (R,/h) sm+ m (I S)n + n' - m - m 

rm + mi', n + '/r ,i _h n'Cm 1 (7) 
?2 (R,lh) s' (1 - s)f-m 
0 

(3) THE CAUSAL PRE-SUPPOSITIONS OF THE ARGUMENTS. 

Now these formulae are precisely analogous to those which 
would be got for the case of drawing counters from a bag, on the 
supposition that each counter drawn is replaced before the next 
draw. The notion of loading, however, brings out a fundamental 
pre-supposition of all inductive arguments, which, though really 
equally present in the case of experiments with bags, is there 
more likely to be overlooked. The notion of loading is the 
notion of a constant cause-factor which operates throughout the 
whole series of throws and co-operates with other and -variable 
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cause-factors to determine the result of each throw. Similarly, 
if each counter is replaced after it has been drawn from the bag 
and before the next draw is made, the original constitution of the 
contents of the bag is a constant cause-factor which operates 
throughout the whole series of drawings and combines with other 
cause-factors which vary from draw to draw to determine the 
actual result of each draw. In the case where the counters are 
not replaced after each draw we have not indeed a contstant 
cause-factor; but we know how the original cause-factor, 
whatever it may have been, has been altered by the results of the 
previous drawings. 

It might perhaps be suggested that there is one fundamental 
logical difference between the problems on drawing counters 
from a bag and the problems on throwing a single counter. It 
might be said that, in the former, we had to use the First Premise 
about Equtprobability, and that, in the latter, it is not used. 
I think that this is a mistake due to an inadequate analysis of the 
notionl of loading in the latter problems. In the bag-problems 
the First Premise about Equiprobability is needed in order to pass 
from the datum that there is such and such a proportion of reds 
in the bag to the probability that the next counter drawn will be 
red. Now, of course, there is nothing directly analogous to this 
in the counter problems. But consider the notion of loading. 
I defined the statement that " a counter is loaded to degree s in 
favour of red " to mean that it is so constructed that, relatively 
to a knowledge of the details of its construction, the probability 
of its falling with the red side upward is s. Now how could 
one pass from the knowledge of its structure to the probability of 
its falling with the red side upwards ? The relevant point about 
its structure would be the position of its centre of gravity with 
respect to its geometrical centre. We should then have to 
consider all the possible angles which the plane of the counter 
could make with the table at the moment of contact, and to find 
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in what proportion of these a counter wvith its centre of gravity 
in the given position would inevitably fall over with the red side 
upwards. But this would not enable us to evaluate the proba- 
bility of such a counter falling with the red side upwards unless 
we kn-ew the antecedent probabilities of its striking the table at 
each of the possible angles, and these antecedent probabilities 
could not be evaluated without some assumptioni about equi- 
probability. Thus the alleged distinction between the two types 
or problem must be rejected. 

I think that we are now justified in making the following 
assertion, which, if true, is very important. Every inductive 
argument, whether it be a nomic generalisation, an eduction,. or a 
statistical generalisation, equally presupposes the notion of causal 
determination. It presupposes the following proposition, which 
I will call the Fundanmental Causal Premise: " The result of each 
experiment is completely determined by a total cause composed 
of cause-factors of two different types. (i) A factor which is 
known to be constant throughout all the experiments, or whose 
variations, if it varies, are known at every stage. (ii) A very 
large number of variable cause-factors, each of which is as likely 
to vary in one direction as in another of all the directions in 
which it can vary." The course of every kind of inductive 
argument is the same. It argues (a) backward from the actual 
results to the present probabilities of the various alternative 
possible cause-factors of the first kind, and (b) forward from these 
to the probability of a proposed future result. If this be true 
it is important for several reasons. (i) There are people who 
profess to reject the notion of causal determination and yet 
-to believe in the validity of some inductive arguments. Some 
of them think that this position is consistent, provided they 
content themselves with Eduction and Statistical Generalization 
and do not attempt Nomic Generalization. If I am right, this 
is a complete mistake. You must h old either that there is 
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something in causation, or that there is nothing in induction. 
To reject causation and accept induction is not, as is com-monly 
supposed, hard-headed; it is merely muddle-headed. (ii) On 
the other hand, there are people who think that, if we could only 
be sure of the Law of Universal Causation, all the troubles of 
induction would be over. This is a profound mistake, for the 
following reasons: (a) Even if we knew that the Fundamtental 
Causal Premise mentioned above is true, we should still be faced- 
with the question whether any inductive argument can establish 
a respectable probability for any proposition about as yet 
unobserved things or events. In our arguments about bags and 
counters we have assumed this premise, but we have reached only- 
miserably low probabilities. It is thus evident that this premise, 
though necessary, is not sufficient to justify the claims of induction 
to make some propositions about unobserved things or events 
highly probable. (b) The Law of Causation is not equivalent 
to the Fundamental Causal Premise. In one respect it is more 
sweeping. We do not need to assume that every event is com- 
pletely determined by causes. All that we need to assume is 
that the result of each of our experiments is completely determined 
by causes. This, however, is not logically important, for 
knowledge of the general principle would guarantee the particular 
application; and the general principle might be self-evident, 
while the particular case, apart from reference to the general 
principle, might not be self-evident. The really serious objectioni 
is that, in another respect, the Law of Causation is not deter- 

minate enough. It is not enough to know the general fact that 
the result of each of our experiments is causally determined. 
We need to know the more specific fact that it is determined in the 

particular way mentioned in the Fundamental Causal Premise. 
We need to know that we are in presence of a constant cause- 
factor, or in presence of a cause-factor whose variation from 
experiment to experiment is known. 
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(4) CONDITIONS FOR A HIGH FINAL PROBABILITY. 

Still confining our attention to artificial problems, we can now 
raise the question: " What further premises would be needed 
in order that the argument may give a high probability to 

propositions about unobserved things or events ? " We see at 

once that the trouble always arises over the antecedent proba- 
bilities of the various permanent cause-factors, i.e., over terms of 

the form R8/h. Laplace, by making the preposterous assumption 
that all these are equal, made them cancel out, and arrived at 

conclusions which are much too good to be true. We, by making 
what seems to be the only assumption about equiprobability 

that is reasonable for the colours of counters of whose origin 

nothing is known, were able to give certain values to the terms 

Re/h; but, by so doing, we arrived at probabilities which are 
almost beneath contempt. In the case of a die or counter of 

unknown origin and construction, it is difficult to see that there 

is any reasonable principle on which the antecedent probabilities 
of the various possible degrees of loading can be assigned. Here 

the Laplacean assumption is not so obviously absurd as in the case 
of counters in a bag. For a given degree of loading is not prima 

facie analysable into a group of a certain number of equiprobable 

sub-alternatives, as a given proportion of red counters in a bag 

is. It is not unreasonable to say that, if nothing is known of the 

construction of a die or counter, any kind and degree of loading is 
as likely as any other; and, on this supposition, the Laplacean 
Rules of Succession follow easily from our formulae (6) and (7); 
for we may reasonably assume that the probability of any exact 

degree of loading s is infinitesimal. We may therefore substitute 
for R81h the expression b (s) ds, where ?t is an unknown function. 
Formula (6) then becomes 

j (s) Sm +l s)n-mds 
Pm + i/rm,nh D . . . (8) 

J 0 (s)sm(1 s s' s mds 

B 
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The Laplacean assumption amounts to supposing that 0 (s) is a 
constant. It is then easy to prove, by means of r- and 

m+ 1 
B-functions, that the expression on the right n + 2 

If we put m = n this becomes w+ 
I 

hich is Laplace's First 
m +2' 

Rule of Succession. The other rules follow in the same way 
from formula (7) on the same assumption. If we suppose that 

m and n in formula (8) tend to mo + I 
will tend to the value-. 

The proposition that 

Lt Pm + i/Tm, nh= . . . . . . . . (9) n 

n --). o 

may be called the Inverted Bernoulli Theorem, which is thus a 
consequence of the Laplacean Assumption in the case of dies and 
counters. 

Now, if the supposition that all degrees of loading for a counter, 
or all original proportions of red counters in a bag, are equally 
likely enables the formule of eduction and of nomic generalization 
to establish reasonably high probabilities, it presumably follows 
a fortiori that any assumption which favours a high degree of 
loading or a large original proportion of counters of the same 
colour will act still more strongly in the same direction. Let us 
call this the Assumption of Loading. It is quite distinct from, 
and independent of, the Fundamental Causal Premise. The latter 
is the assertion that there is a cause-factor of a certain kind 
operating throughout the whole series of experiments, and it is 
necessary if any inductive argument is to establish any probability 
at all, high or low. The former is an assumption about the relative 
antecedent probabilities of the various possible cause-factors of the 
type required by the Fundamental Causal Premise. It is required, 
not to validate inductive arguments as such, but to validate the 
claims of som?e of them to produce high probabilities. 
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(5) TRANSITION FROM ARTIFICIAL TO NATURAL CASES. 

We have now completed our analysis of inductive arguments, 
as applied to artificial cases, and have seen exactly what are the 
constitutive or ontological conditions which must be fulfilled if 
such arguments are to be both valid and fruitful. It remains to 
consider whether there is any reason to believe that these 
conditions are fulfilled in nature. Let us take the case of investi- 
gating swans, finding that all observed swans are white, and 
arguing to the probability that the next swan, or all further 
swans, will be white; and let us compare this with the artificial 
cases which we have so far considered. The analogies are as 
follows: All swans, past, present and future, may be compared 
to the total contents of the bag. Drawing a counter, noting its 
colour, and not replacing it, may be compared to catching a swan, 
noting its colour, and taking care not to count the same swan 
again among one's data. So far the analogy is complete. But 
there are many important differences, and -all the more obvious 
of these are unfavourably relevant to induction as applied to 
nature, in comparison with induction as applied to the artificial 
case of the bag. (1) The number of swans past, present and 
future is unknown; but it is almost certainly very great as 
compared with the number that have been observed up to any 
given moment. This would be fatal to the attempt to give a 
high probability to the proposition that all swans are white, even 

if we accepted the Laplacean assumption, for + I 
would be 

vanishingly small. It seems to me doubtful whether any assump- 
tion of loading which had the faintest plausibility would suffice 
to give a high probability to a law like " all swans are white," 
when the evidence is only that all observed swans have been 
white. On the other hand, the probability that the next swan 
to be observed will be white might be reasonably large, in spite 

B2 
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of the disparity between m and n, if we could accept some 

assumption about loading much less radical than Laplace's. 

With Laplace's assumption it is m+ ? which is absurdly high. m -1-2' 
On the assumption that any swan is antecedently as likely to 

have any one colour as any other, it is -, no matter how great m 

may be. In either case it is independent of n. It is thus reason- 
able to suppose that, with some assumption about loading inter- 
mediate between these two, the probability that the next swan 
will be white would be fairly high if m were fairly large, in spite 
of the fact that n is incomparably larger than m. (2) The same 
swan might happen to be observed several times, and to be mis- 
taken for different swans. This will cause us to think that m is 
larger than it really is. This source of weakness is absent when 
we are dealing with events, and not with relatively permanent 
substances, like swans; for the same events cannot be observed 
twice over by the same observer, and we can generally say with 
fair confidence whether different people are observing the same 
or different events. We may perhaps sum up this difficulty by 
saying that the investigation of substances in nature is inter- 
mediate between the case where a counter is never put back 
after being drawn, and the case where a counter is always put 
back after being drawn. (3) We come now to the difference 
which is most serious. In the case of the counters in the bag, 
we assumed that, at any drawing, any counter then in the bag 
was equally likely to be drawn, and this was an essential premise 
of the inductive argument. Now, if the bag be not too large, and 
does not have pockets in it, and the counters be well mixed, this 
assumption seems to be justified; but it most certainly is not 
justified in applying induction to nature. It breaks down for 
two reasons. (i) Spatially, only a very limited range is open to 
our observation. There may be swans on other planets, and, 
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if there are, none of them could possibly have been included among 

our data. (ii) Similar remarks apply to time. Obviously the 
swans that could be observed up to a given date could not include 
any swans that began to exist after that date, and it is equally 

certain that our observations (including the reports of our 
ancestors) do not include swans that existed more than a few 

thousand years ago. It is as if the bag were so large that the 
greater part of its contents could not possibly be reached by us. 

The result is that the First Premise about Equiprobability breaks 
down, and, as we saw, every kind of inductive argument requires 

this premise. An attempt has been made to evade this criticism 

by appealing to the principle that mere difference of spatial and 
temporal position is irrelevant. Even Mr. Keynes seems to 

attach some importance to this principle; but, whether it be true 
or false, it is surely altogether beside the mark; for there is no 

such thing as mere difference of spatio-temporal position. If A 
is in a different place from B, the things that immediately 

surround A will differ from those which immediately surround B. 
If A exists at a different time from B, the things and events which 
are contemporary with or immediately precedent to A will differ 

from those which are contemporary with or immediately precedent 
to B; and no one can assert that a difference in a thing's near 
neighbours in space and time is always irrelevant to its other 

properties. 
It is clear, then, that there are important differences between 

any subject of inductive enquiry in nature and the artificial cases 
for which we have worked out the general theory of inductive 
argument; and all the differences which we have mentioned are 

unfavourable to induction as applied to nature. The probabilities 
which can be reached in the artificial examples are the unattain- 

able upper limits of the probabilities that can be reached by the 

application of induction to nature. Half, and only half, of this 

fact has been recognized by most writers on Inductive Logic. 
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They saw the special sources of weakness in the application of 

induction to nature, and all the various eliminative methods which 
they have recognized and formulated are simply ways of reducing 
these sources of weakness to a minimum; but, having exercised 
themselves in formulating methods of elimination, they thought 
that they had done all that was required of them. They failed to 
notice that they had merely reduced certain obvious sources of 
weakness, and had given no positive theory of inductive reasoning 

at all. 
We can now see clearly that two tasks must be accomplished 

if the application of inductive arguments to nature is to be valid, 

and is to lead to reasonably probable conclusions. (i) We must 
have some reason to believe that something analogous to 
" loading " exists in nature, and that certain kinds of " loading " 

are antecedently much more probable than others. (ii) We must 
somehow get over the objection that, since future and remote 
events could not have been included among our observed data, 
the First Premise about Equiprobability, on which the validity of 
every kind of inductive argument rests, seems to have broken 
down. It is evident that three general questions can be raised 
about inductive inference. These questions may be described as 
the logical, the ontological and the epistemic question. The 

logical question is to determine the formal character of inductive 
arguments as such; to state the principles of formal logic and 
probability which they use, and to see exactly how these enter 
into the argument; and to discover what premises about equi- 
probability they require. It includes the further question as to 
what further premises are required if the argument is to establish, 
not merely somie probability, but a reasonably high probability. 
This problem has now been completely solved, the first part in 
detail and the second in outline. The ontological question is to 
determine the minimum assumption about the general structure 
of nature which will guarantee that the conditions, required in 
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order that an inductive argument applied to tiatural phenom.ena 
may establish a high probability, are fulfilled. If this can be 
solved there will still remain an epistemic question. Do we 
know that nature has this general structure ? And, if so, how do 
we know it ? Or, if we do not know it, do we at least know that 
it is highly probable ? And, if so, how do we know this It is to 
these questions that we must now address ourselves. We will 
begin with the ontological question. 

(6) THE ONTOLOGICAL QUESTION. 

The only good treatment of this question with which 'I am 
acquainted is contained in Chaps. XXI, XXII and XXXIII of 
Mr. Keynes's Treatise on Probability. Mr. Keynes's theory may 
be called the Theory of Generators. I think that Mr. Keynes's 
theory is susceptible of improvement in at least two respects. 
(1) It is stated very briefly, and when one tries to think it out 
in detail one finds that it is necessary to recognize certain 
distinctions which Mr. Keynes does not explicitly make, and to 
deal with certain complications which he does not explicitly 
consider. (2) I think it is possible to show that generators may 
be regarded as convenient parameters for stating and working 
out the theory, but that all that is needed can be accomplished 
without assuming that they actually exist in nature. I propose, 
therefore, (1) to begin by assuming the existence of generators, 
and simply to improve (as I think) the formal exposition of the 
theory. Then (2) I shall show that the actual existence of 

generators need not be assumed. 

(6.1) Definitions. 

Suppose there is a certain set of determinable characteristics 
F1, I2, ... F,, which are logically and causally independent of 
each other. This means that any of the 2" - 1 combinations, 
which can be got by taking them one at a time, or two at a time, 
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or ... n at a time, is both logically and causally possible. Let C 

be another determinable characteristic. Suppose that there is a 
certain, sub-set of characteristics of the first kind, e.g., 

(F1I r2, F. F. ,), and suppose 

(i) That anything which had all the characteristics F',.... F 

would have the characteristic C, and 
(ii) That anything which had only a selection from the set 

rF ... F,. might lack C. 

Then we say that the set (rF .... F7) generates C. We call 

(rl .... rF) a generating set for C, and we call each of the character- 
istics rl, r2 .... r, generating factors of C. 

These definitions obviously leave it possible (1) that a generat- 
ing set may generate several characteristics, e.g., (rF ... Fr) 

might generate C and C'. (2) A characteristic may be generated 
by several different generating sets-e.g., there is nothing in the 

definition to exclude the possibility that C is generated by 
(F7 + 1) and (r2 ..- rF, Fn + 2) as well as by (1` ... F7). All 

that is excluded is that C should be generated, e.g., by (r1 F2) 
as well as by (F1 .r. F7). 

I am going to assume, however, until farther notice, that the 
same characteristic C does not in fact have more than one 

generating set. On that assumption we can talk of the generator 

of C. To say that (rF ... F7) is the generator of C means that 

(i) Anything that had F1 ... IF would have C, and 
(ii) Anything that had C would have IF ... IF. 

It will, of course, still remain possible that some generating sets 

generate more than one characteristic. The above assumption 
will be called the Denial of Plurality of Generators. 

A generating set which contains only one factor-e.g., (rl)- 
will be called a set of the first-order. 

A generating set which contains two, and only two, factors 

-e.g., (IF F2)-will be called a set of the second-order. 
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A characteristic which is generated by a generator of the 
rth order will be called a characteristic of th3 r th order. If we 
deny plurality of generators, each generated characteristic will 
be of one and only one order. 

The next conception that we need to introduce is that of 
fertility. A generating set is said to be sterile if it generates no 
characteristic. If it generates s characteristics it is said to 
have fertility s. Thus a sterile generating set is one whose 
fertility is 0. 

The fertility of a generating factor may be defined as follows: 
It is the sum of the fertilities of all the generating sets of which it 
is a factor. 

A generalization is a universal proposition connecting two 
mutually exclusive sets of generated characteristics. Thus, the 
proposition, " Anything that had C1C2C3 would have C4C5 " is 

a generalization. A generalization whose subject consists of ,> 
characteristics, and whose predicate consists of v characteristics, 
is said to be a " generalization of the form g,v." 

(6.2) Assumptions. 

Let us suppose that there are N generated determinable 
characteristics C10. ... CN, and that they are logically independent 
of each other-i.e., that there is no a priori objection to the 
occurrence of each of the 2N ... 1 selections that can be made by 
taking them 1 or 2 or .... N at a time. Let us suppose that there 
are n generating factors r1 ... 

We will assume- 
(i) That each of the characteristics C1 ... CN is generated 

by some generating set composed of factors selected 
from the n generating factors. 

(ii) That no generating factor is superfluous. This means 
that every one of the n factors is a factor in some 



26 C. D. BROAD. 

generating set which generates some characteristic in 
the set C1 ... CN. (It is, of course, quite possible 
that some generating sets may be sterile and generate 
no characteristic in the set C1 ... CN.) 

(iii) That N > n. 

(iv) That each of the generated characters is generated by 

only one generating set. (Denial of Plurality of 
Generators.) 

It follows at once that the N generated characteristics fall into 
2ff- 1 mutually exclusive classes (some of which may be null) 
corresponding to the 2' - 1 generating sets. The set of 
characteristics generated by the rth order generating set (r1 ... r,) 
may be denoted by ocl ... r, and similarly for the rest. 

(6.3) Application to Nomic Generalizations. 

Suppose that a certain thing has been found to have the 

characteristics C1 ... C,u Cg. + 1 ... C , +,. What is the ante- 
cedent probability of the generalization: " Anything that had 
C1 ... CV would have C,, + 1 ... C, + ?" This is a generalization 
of the form gY,,. 

This generalization will be true if, and only if, the factors 
which are required to generate the predicate set are contained 
among the factors which are required to generate the subject 
set. Suppose, e.g., that C, ... Ct require between them for their 
generation r1 ... rF. Then anything that had C1 ... C would 
have IF ... 17. Suppose that C,, + 1 ... C,. +,, between them 
required a selection from Fr ... r. Then anything that had 
rF ... rF would have this selection, and anything that had this 
selection would have C,, + 1 ... C, + v Hence the original 
generalization must be true. 

Now the . subject properties might between them require 
1 or 2 or ... n generating factors. Let us denote the proposition 
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that they require exactly r generating factors by f. Let us 

denote the proposition that the v predicate properties require 
between them exactly s generating factors by v8. It is evident 
that we need not consider cases in which s > r, for it would then 
be impossible that the generating factors of the predicate should 
be contained in those of the subject. A typical generalization 
of the form g,,. would be: "Everything that had CQ ... C C 

would have C,. + .C,, + . Let us denote this by g 12-1, + 

We want to evaluate the probability g I + - + /h, when 

h includes the assumptions enumerated in (6.2). 
By using the Rule of Expansion and the Principle of Equiva- 

lence we find that 
1 ... r=n 8=r 1... 

g Ih z a (g vr v)/h, which 
7f + + v rl 8 = A + I... + v 

r =n 8 =r 1 .. A 

- E X [(v ,)/h] [g /lF V, h], by the 
r = 1 8 = 1 , + 1 ... j1 + v 

Conjunctive Principle.-Now the probability that the s 
generating factors required by the predicate are wholly contained 
among the r generating factors required by the subject is obviously 
the ratio of the number of ways of choosing s things out of r 
things to the number of ways of choosing s things out of n things, 

r ! (n -s) ! 
ix' n! (r s) Hence 

1... ~ r = 87= r.! (n - s) ! 
gp+ I , .vh = i h; 2 [(llrv,)Ih] ny! (r s)! - *10) 

r =1 8= 1 

The antecedent probabilities of all generalizations of the form 

g,v will, of course, be equal. 

(6.31) Effect of the Relative Values of n and N. 

So far we have made no use of the assumption that N, the 
number of generated characteristics, is greater than n, the 
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number of generating factors. I shall now prove that if n ' N. 
every generalization of every form might be false, and that if n > N 
some generalization must be true. (1) Suppose that N = n - p. 
Call the N generated characteristics C1 C2 ... C, - p. Then it is 
evidently possible that (rl) generates C1 and it only; that (I2' 

generates C2 and it only; and that (F,, - , - 1) generates Cn - , - 1 

and it only. Then the remaining characteristic C,__ cannot 
require any of the factors rF ... Fn-p -l, and it must require all 
the factors rn - Dto rF, for otherwise these factors will be sterile- 
and superfluous. Thus the set (rF - , ... Fn) generates only a 
single characteristic C _ p, and all the sub-sets within 

(rn -_ p ... F,,) are sterile. It follows that no generalization could 
be true, on this supposition, and this supposition is clearly possible 
if N < n. Therefore, if N < n, all generalizations might be 
false. 

(2) Suppose that N = n. Then it is plainly possible that 
all the generated characteristics should be of the first order. 
If so, each first-order generating set must generate one and 
only one characteristic, and all other generating sets must 
be sterile. Under these conditions it is impossible that 
any generalization should be true, and these conditions can 
exist if N = n. Therefore, if N = n, all generalizations might. 
be false. 

(3) Suppose that N > n. Two cases will arise, viz., (3.1) 
that N > 2n - 1, and (3.2) that N c 2n - 1. On the first 

alternative at least one of the generating sets must generate 
more than one characteristic. In that case at least twa 
independent generalizations must be true. For, to take the 
weakest case that is compatible with the conditions, suppose 
that only one generating set generates more than one 

characteristic, and that this set generates only two character- 
istics C1 and C2. Then both the generalizations g'2 and g2l must 
be true. 
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On the second alternative it is possible that each characteristic 
is generated by a different generating set, and therefore that each 
generating set which is fertile generates only one characteristic. 
In that case there will be no simply convertible generalizations 
like g12 and g21; but, nevertheless, even in this most unfavourable 
case, there will be some true generalizations. Suppose, e.g., 
that N = n + 1. Either some or none of the generating sets of 
these n + 1 characteristics have a fertility greater than 1. If 
any do, then there must be some true generalizations. Suppose, 
then, that each of the n + 1 characteristics is generated by a 
different generating set. We then have n + 1 fertile generating 
sets, each of unit fertility. The rest of the generating sets are all 
sterile. It follows that these n + 1 generating sets must between 
them take up all the n generating factors, for otherwise some 
generating factors would be sterile and superfluous. Let us call 
the generating sets yl, Y2' ... yn + 1. *Suppose, if possible, that 
every y contains a factor not contained in any of the remaining 
y's. From each y select such a r. The r's thus associated with 
the n + 1 y's cannot all be different, for there are only n r's in 
all. So there will be at least one r associated in this way with 
two or more y's. 

But this is self-contradictory. For, if r is associated with 

Yi in this way, it will be a member of Yl and not of Y2; whilst if F 
is associated with Y2 in this way, it will be a member of Y2 and not 
of yl. Thus the supposition that every y contains some F 
which is not contained in any of the other y's leads to a contradic- 
tion, and must be rejected. Therefore it is always possible to 
find some selection of y's from the original n + 1 y's, such that it 
includes all the factors that are included in some other y. Conse- 
quently some generalization of the form g,Lv must be true. It is 
obvious that this argument applies a fortiori when N = n + p, 
wherep> 1. 

* I have to thank Mr. A. E. Ingham, Fellow of Trinity, for kindly 
supplying me with the proof which follows. 
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Now the total number of possible generalizations of the form 

N-1 1 is N, and if any generalizations be true, some of these 
must be true. Thus, the antecedent probability of a generaliza- 

tion of this kind cannot be less than N. In practice, however, we 

can be fairly certain that the subject and predicate of our 
generalization do not together exhaust the total number of 
generated characteristics, so we have no right to assign so high an 
antecedent- probability to any generalization that we shall 
actually meet with. I do not see any way of assigning a 
numerical value to the antecedent probability of a given 
generalization, even if we know that N > n. In order to do so 
we should have to evaluate the probability (V.rv,)!h in equation 
(10). This is the antecedent probability that the subject- 
characteristics C. .... C,> between them require r factors for their 

generation, and that the predicate factors C, + .... C,,, + v between 

them require s factors for their generation. This could not be 
evaluated unless we made assumptions either about the ante- 
cedent probability that a generated characteristic, chosen at 
random, shall be of such and such an order, or about the ante- 
cedent probability that a generating set, chosen at random, 
should be of such and such fertility. (These probabilities could 
not, of course, be independent. Any assumption about the one 
would obviously affect the other.) -I do not see any reasonable 
principle on which such antecedent probabilities could be 
assigned. It certainly does not seem reasonable to hold that 
any of the N generated characteristics is equally likely to be of the 
1st, 2nd, or nth order; and it certainly does not seem reasonable 
to hold that any one of the 2" - 1 generating sets is equally 
likely to have any degree of fertility from 0 to N inclusive. 
Common sense would suggest that very high-order and very low- 
order characteristics would be rare, and that very fertile and 
very infertile generating sets would be rare. The Principle 
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of Indifference would, I think, allow us to suppose that the 
antecedent probability of a given fertility would be the same for 
all generating sets of the same order; but it would certainly 
forbid us to assume that it was the same for generating sets of 
different orders. 

This is a most unsatisfactory result. It is of very little 
interest to know that the antecedent probability of a generaliza- 
tion is finite, for this means only that it is greater than 0. What 
we want to know is that it is not less than a certain assignable 
magnitude, which would presumably be a function- of [L, v, N, n, 
and the antecedent probabilities mentioned above. Possibly 
someone with greater technical ability than I may be able to 
carry the argument to a more satisfactory conclusion, now that 
the nature of the problem has been made, as I hope it has, 
quite clear. 

It is important to notice exactly what is the force of the 
condition that N > n. This condition is not needed to prove 
that any proposed generalization has a finite antecedent proba- 
bility, as can be seen from equation (10), which makes no use of 
this condition. The condition N > n simply assures us that 
some generalization must be true. This, of course, implies that 
any generalization has a finite antecedent probability. But it 
can obviously be the case that every generalization has a finite 
antecedent probability, even though it is not certain that any of 
them is true. The theory of generators, without the assumption 
that N > n, assures us that the antecedent probability of any 
generalization is finite, in the sense that it is greater than 0. 
The assumption that N > n assures us that it is finite, in 
the sense that it is greater than a certain number which 
is itself greater than 0. The trouble is that we cannot 
evaluate this number without making assumptions about 
antecedent probability for which there seems to be very little 
justification. 
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(6.32) Strengthening and Weakening Conditions for a given 
Generalization. 

Let us now consider what circumstances would tend to 

strengthen the antecedent probability of a generalization of the 

from g,. Let us first consider the subject. It is evidently 
desirable (a) that the subject-characteristics between them 
should require as many generating factors as possible. For this 
will increase the probability that the generating factors required 
by the predicate are contained among those required by the 
subject. Mere increase in ,u, keeping v fixed, may not secure 
this, for the added characteristics may between them require no 

generating factors besides those already required to generate the 

original ,u subject characteristics. Still, an increase in t does 
increase the probability that the subject requires a large number of 
generating factors, and does therefore increase the probability of 
the generalization. If we assume [i and v to be fixed, then it is 

evident that the generalization will have the best chance of being 
true if (i) the subject contains characteristics of a high order, 
and (ii) the generating sets of the subject characteristics 
overlap as little as may be. (b) It is desirable that 
the generators of the subject characteristics shall be as 
fertile as possible, for this will increase the probability 
that the predicate characteristics are contained among 
those which are generated by the generators of the subject 
characteristics. 

The conditions which the predicate should fulfil are com- 
plementary. It is desirable (a) that it shall require as few 
generating factors as possible, for this will increase the probability 
that all the generating factors required by the predicate are 
contained among those which are required by the subject. Mere 
decrease of v, keeping ,. fixed, may not secure this, for the charac- 
teristics which remain may require for their generation all the 
factors required by the original v. Still, a decrease in v does 
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increase the probability that the predicate requires only a small 

number of generating factors, and does therefore increase the 

probability of the generalization. If we assume p and v to be 

fixed, then it is evident that the generalization will have the best 

chance of being true if (i) the predicate contains no characteristics 

of a high order, and (ii) the generating sets of the predicate 

characteristics overlap as much as possible. (b) The fertility 

of the generators of the predicate characteristics does not seem 

to be relevant. 

(6.321) Tests for the Fulfilment of these conditions. 

We now see what conditions tend to strengthen the ante- 

cedent probability of a generalization. Is there any way of 

testingf whether they are probably fulfilled in a given case ? I 

think there is. 
(a) If a characteristic be of high order, it requires the presence 

of a large number of generating factors in any instance in which 

it occurs. Suppose, e.g., that C is generated by the set 

(rF .. Ir). Then in anything that has C there will be all the 

2- 1 generating sets that can b- formed out of these r factors 

Of course, most of these may be sterile, and none of them need be 

very fertile. Still, the larger r is the more likely it will be that 

these 2' - 1 sets, which are present whenever C is present, generate 

between them a good many characteristics. All these character- 

istics will be present whenever C is present. On the other hand, 

any selection of them which does not include one of those 

generated by the complete set (ri .. 1r>) can be present without 

C being present. If, then, we find among the subject character- 

istics a certain one C, such that, whenever C is present, a certain 

large group of other characteristics is present, whilst many 

selections from this group can be present in the absence 

of C, there is a presumption that C is a characteristic of a 

fairly high order. 
c 
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(b) If a characteristic C is generated by a highly prolific 
generating set, we shall find that there is a certain large group of 
characteristics, such that, whenever C is present, they are all 
present, and, whenever any of them is present, C and all the 
others are present. By making supplementary experiments and 
observations on these lines, we could presumably determine with 
fairly high probability whether the conditions required for a 
given generalization to have a high antecedent probability were 
fulfilled or not; and we see that the question whether ,u is large 
as compared with v in this generalization will be of relatively 
small importance in comparison with the other conditions. The 
relative magnitudes of tu and v will merely be the test that we 
shall have to fall back upon if the other tests are inapplicable or 
lead to no definite results. 

(6.4) Admission of Plurality of Generators. 

Among the assumptions in (6.2) was included the denial of a 
plurality of generating sets for the same generated characteristic. 
Let us now consider in outline the result of relaxing this condition. 
We are to admit now that a generated characteristic C may be 
generated in some cases by one generating set, e.g., (`1 F2); in 
other cases by another set, e.g., (F2 F3); and in other cases by 
another set, e.g., (F4 r5 F6). It is evident that there are three 
possible kinds of plurality of generators to be considered. The 
various generating sets which generate C may be either (a) all of 
the same order, e.g., (IF) and (F2); or (b) all of different orders, 
e.g., (IF) and (F2 r3); or ,(c) a mixture, e.g., (r1), (F2), and 
(F3 F4). These three kinds of plurality may be described as 
Uniordinal, Multiordinal, and Mixed Plurality, respectively. It 
follows from our definition of generation that a pair of generating 
sets such as (F1) and (rl F2) cannot both be generators of a 
single characteristic C, for to say that (F1 r2) generates C 
implies that IF does not do so and that r2 does not do, 
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so. We can, of course, no longer speak of the set which 
generates a given characteristic; nor can we speak of the 
order of a characteristic, unless we happen to know that the 
only plurality of generators possible for this particular character- 
istic is uniordinal. 

There is another very important distinction to be drawn in 
connexion with plurality of generators. We start, as before, with 
an observed object, having a certain N generated characteristic 
C1 .... 0N. We suppose, as before, that each of them is generated 
by a set selected from a certain n generating factors r1 ... rn 
which this thing possesses, and that none of these factors is 
wholly sterile and superfluous. In this particular thing, at this 
particular time, of course, each characteristic C will be generated 
by one and only one generating set. But we are now admitting 
that, in other things, or in this thing at other times, the character- 
istic C may be generated by other generating sets. Now two 
cases arise. Are these other sets to be simply other selections 
from the same n generating factors rP ... rF ? Or are we to admit 
that other things may have other sets of generating factors, e.g., 
I' ... P, and that, in them, C may be generated by one or more 
generating sets selected out of these m different generating 
factors ? 

This question is very closely connected with the second 
difficulty about induction as applied to nature, viz., the fact that 
it is certain that all the instances that we have observed have 
fallen within a certain limited region of space and time, whilst 
we profess to argue to cases which not merely did not come, but 
could not have come under our observation. Mr. Keynes's Theory 
of Generators is not directly addressed to this difficulty, but to the 
question of something analogous to " loading " in nature. But, 
if we want to avoid the present difficulty, we shall have to assume 
that the only kind of plurality possible in nature is of the first 
kind and not of the second. We must assume that, in every thing, 

c 2 
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at every time and place, the characteristics C1 ... C,N are generated 

by the characteristics r1 ... rF,, and that the only plurality is a 
Selective Plurality, i.e., consists in the fact that the same character- 
istic C may be generated in one thing by one set selected from 
r1.. Fm, and in another thing by another set selected from 

FI.. F'. 

(6.41) Application to Nomic Generalizations. 

Let us suppose, to simplify the argument, that we need only 
consider uniordinal plurality of generators. Suppose that one 

characteristic C1, in the subject of a generalization, had a plurality 
of generators, e.g., suppose that (F1) and (F2) are both generators 
of el. Now it might happen that (F1) also generates a certain 

characteristic C,, + 1 in the predicate of the generalization, whilst 

(r2) does not. If, now, we were to take another thing with the 
same subject properties, it is quite possible that in it C1 should be 

generated by (r2) whilst rF was absent altogether. Then if 

(IF) be the only possible generator of C,. + 1, the generalization 
would necessarily break down for this second thing. This shows 
the effect of admitting plurality of generators as regards the 

subject of the generalization. 
Let us next consider its effect as regards the predicate of the 

generalization. So far as I can see, it is never a disadvantage for 
the predicate properties to have a plurality of alternative 
generators, whilst it is sometimes a positive advantage. Suppose, 
e.g., that the generalization was " Everything that had C1 would 
have C,, + i." (a) Provided that C1 has only one possible 
generator, everything that has C1 must have this generator; and, 
provided that this generator does generate C,. + l, it cannot 
matter in the least how many more generating sets are also 
capable of generating C,. + 1. (b) Suppose that C1 is generated 
both by (IF) and by (r2). If C, + 1 has only one possible 
generator, e.g., (IF1), the generalization will be wrecked, 
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as we saw, by an object in which C1 is generated by 

( F2), and in which rF is not present. But suppose that 
either (rF) or (F2) will generate C,, + 1, then C,, + 1 will 
occur in any object that has C1, and the generalization will 
be saved. 

Thus the correct statement about the effect of a plurality of 
generating complexes for a single characteristic would seem to be 
as follows: (a) It is always unfavourable to the antecedent 
probability if the subject-characteristics have a plurality of 
alternative generators; and it is never unfavourable if the predicate 
characteristics have a plurality of alternative generators. (b) If 
any of the subject-characteristics have a plurality of alterna- 
tive generators it is favourable to the generalization for the 
predicate-characteristics also to have a plurality of alternative 
generators. 

If a generalization is to have a finite antecedent probability 
in the only important sense, i.e., if its probability is to exceed a 

certain assignable number which is itself greater than 0, the 
following condition would seem to be necessary. There must be 

a probability greater than a certain number which is itself greater 
than 0, either (a) that none of the subject-characteristics have a 
plurality of alternative generators, or (b) that, if somie of them do, 
the predicate-characteristics have at least as great a plurality 
of alternative generators. For, in the latter case, there will be a 
probability, which is finite in the non-trivial sense, that any 
generator which generates the subject-characteristics is also a 

generator for the predicate-characteristics 

(6.42) Application to Eduction. 

It is plain that the admission of a plurality of alternative 

generators for a given generated characteristic weakens nomic 

generalizations, since additional assumptions are now needed to 

guarantee that the antecedent probability of the generalization is 
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finite. This is not so if we confine ourselves to eductive conclu- 
sions. Suppose the eductive conclusion is that the next thing 
that we meet which has C1 will also have C2. Suppose that C2 

has only one generator, e.g., (r2), whilst C, has several alternative 
generators, e.g., (rl) and (F2). Then, so long as there is a finite 
antecedent probability that the next thing which has C, will have 
(r2), there is a finite probability that it will have 02. But, since 
the number of generators is only 2' - 1, the number of alternative 
possible generators for C, cannot exceed 2n - 1. Hence this 
condition is automatically fulfilled without making any fresh 
assumption. As a matter of fact the condition laid down above 
is needlessly sweeping. It would not matter how many alternative 
generators C, had, provided that the number of alternative 
generators of 02 bore a finite ratio to it, i.e., a ratio greater than a 
certain number which was greater than 0. 

It is important to notice that, even if we confined our efforts 
in induction to establishing eduction, and gave up all attempts 
to establish generalization inductively, we should still be pre- 
supposing the existence of universal laws. For the justification of 
eduction involves the assumption of generators, and the connexion 
between a generating set and the characteristics which it 
generates is a universal law. We should thus be in the 
odd position that the existence of universal laws is pre- 
supposed by all induction, though no inductive argument can 
assign any finite probability to any law connecting observable 
characteristics. 

(6.5) The Elimination of Generators. 

It is evident that Mr. Keynes thinks of the generated character- 
istics as qualities like colour, hardness, noise, etc., which we can 
observe, and that he thinks of the generating factors as their 
hypothetical physical causes. It seems clear to me that it 
must be possible to eliminate the hypothetical generating 
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factors, and to state the case wholly in terms of observable 
characteristics and their relations. I will give a very slight 
sketch of how this could be done, on the assumption that there 
is no plurality of alternative generators for a given generated 
characteristic. 

If the theory of generators be true, and the above assumption 
be made, all the N characteristics which we are concerned with in 
inductive arguments must fall, as we sa win (6.2), into 2' - 1 
mutually exclusive classes, such as OC, Cc12, . CI12 ... . Some of 
these may contain no members. Now, if the theory of generators 
be true, each of these classes must form what I will call a Coherent 
Set. A Coherent Set may be defined as follows: To say that oc 
is a coherent set means that it is a set of characteristics such that 
no member of it can ever occur without all the rest. Any 
particular coherent set can be defined by means of any character- 
istic C that falls within it. Thus they coherent set cxC may be 
defined as follows: It is the set of characteristics consisting of 
C itself and of every other characteristic which is always present 
when C is present, and absent when C is absent. Thus 

OcC=X[X = C. v: xEX _x xcC]. 
Now we can evidently drop the notion of generators altogether, 

and take the notion of mutually exclusive coherent sets of 
observable characteristics as fundamental. The fundamental 
assumption will now be that each of the N characteristics falls 
into some one member of a set of mutually exclusive coherent 
sets, whose total number is not greater than 2' - 1, where 
n < N. It is obvious that every relation between these sets 
which could be deduced from the hypothesis of generators can be 

stated, without this hypothesis, as part of the original assump- 
tion. This I will illustrate very briefly. 

(1) A set 5 is subordinate to a set cx if the presence of any 
characteristic from ax is always accompanied by that of some (and 
therefore of all) of the characteristics in ,X, whilst the converse 
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does not hold. This is obviously the kind of relation that holds 
between ml and m12, or between ac1 and mC123. 

(2) A set f is immediately subordinate to a set oc if ,3 is sub- 
ordinate to ac, and there is no set y such that y is subordinate to 
a and 3 is subordinate to y. This is the kind of relation that 
holds between oc1 and Oc12. 

(3) A set of sets f, y, 8 form an exhaustive set of subordinates to 
ac if each is subordinate to oc, and whenever a characteristic from 
each of the sets P, y, a is present, one (and therefore all) of the 
characteristics in oc are present. This is the kind of relation that 
holds between (c1, 0C12, C3) and 0C123; or between (m1, mC2, mC3) 

and m123. 

(4) Three sets, cx, 3, y, may be so related that none is sub- 
ordinate to either of the others, but that the presence of a 
characteristic belonging to any two of them is always accompanied 
by the presence of one (and therefore of all) the characteristics 
belonging to the third. This is the kind of relation that holds 
between l21 ?C23, and ?a31* 

It is clear that all that is necessary in the assumptions which 
Mr. Keynes makes in terms of generators and their relations to 
each other, on the one hand, and to the characteristics which they 
generate, on the other, could be stated in terms of coherent sets 
and their relations of subordination, etc., to each other. Since 
the existence of generators implies the existence of coherent sets 
having these relations to each other, whilst coherent sets might 
exist and have these relations to each other even if there were no 
generators, it is obviously advantageous from a purely logical 
point of view to state the conditions in terms of coherent sets, 
and to avoid the assumption of generators. From the practical 
point of view of expounding the theory and drawing remote conse- 
quences from it, it is desirable to continue to employ the notion 
of generators; but they can now be regarded as no more than 
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convenient parameters. They may exist, but it is not necessary 
to suppose that they do. 

If we allow plurality of alternate generators for a given 
characteristic the elimination of generators will be a more 
complicated business; but it is clear that it must be capable of 
being carried through even in this case. 

(6.6) The Establishment of Functional Laws. 

There is one other point which it is important to mention 
before leaving the Ontological Question. I have assumed that 
the r's and the C's are determinable characteristics. Mr. Keynes 
does not explicitly say that they are, but he evidently must intend 
the F's, at any rate, to be determinables and not determinates, 
for he assumes that the total number of r's is finite, and hopes 
that it may be comparatively small. This assumption would be 
absurd if the 17's were supposed to be determinate characteristics, 
for even a single determinable generating factor might have a 
large, and even a transfinite, number of different determinate 
values. But, if the F's are supposed to be determinables, so 
too must the C's be, for it is evident that a set, no matter how 
complex, of merely determinable F's would not generate a 
determinate C. Two consequences follow: (1) It is not nearly 
so plausible as Mr. Keynes seems to think that the number of C's 
should largely exceed the number of F's. The number of different 
determinable characteristics that we can observe is by no means 
large; the qualitative variety which we observe in nature is 
due to the fact that each of the comparatively few observable 
determinables, such as colour, temperature, etc., has an enormous 
and perhaps transfinite number of determinates under it. (2) The 
assumptions that have been made justify only generalizations of 
the crudest kind, viz., assertions of the form that, whenever 
certain determinables are present, certain other determinables 

will be present. Now only the most backward sciences are 
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content with such generalizations. What we want are Functional 

Laws, i.e., laws which will enable us to predict the determinate 

values of the predicate-characteristics for any given determinate 

values of the subject-characteristics. To establish such laws, 

further assumptions have to be made, and something analogous 

to the Method of Concomitant Variations must be used. These 

assumptions are stated (whether with complete fullness or 

accuracy I do not here enquire) in Mr. Johnson's treatment of 

Demonstrative Induction in his Logic. The only point that I will 

mention here is that there now arises the possibility of yet 

another kind of plurality, which Mr. Johnson rules out, quite 

unjustifiably in my opinion. This is the possibility that the 

same determinate value of the predicate-characteristics may be 

determined by several different determinate values of the subject- 

characteristics, i.e., that the functional laws of nature may not all 

be one-valued functions of the variables. 

(7) THE EPISTEMIC QUESTION. 

We have now seen what conditions must be fulfilled in nature 

if inductive arguments are ever to be able to establish reasonably 

high probabilities. What evidence, if any, have we for suppos- 

ing that these conditions are in fact fulfilled ? Let us call 

the conditions laid down in (6.2) The Principle of Limited 

Variety, and let us denote it by 1. What we have shown is 
that, if g be any generalisation, g/l .jz s, where s is a certain 

number which is greater than 0, but which we have not been 
able to evaluate. 

Now I do not think that anyone would maintain that the 

Principle of Limited Variety has the slightest trace of self- 

evidence, or that it can be deduced from anything else which is 
self-evident. Hence it must be admitted that we do not know 
that 1 is true. So the next question is: Has I a finite probability 
with respect to anything that we do know to be true ? 
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Suppose there were certain known facts, f, relative to which 1 
had a finite probability. Suppose further that, if I were true, 
certain empirical consequences, e, would follow, and that e is 
found to be true. Now 

ilfe- ('if) (elif) by the Conjunctive Principle. 
elIf 

But, by hypothesis elif = 1. Hence l/fe = ('if) Since elf 
(elf) 

cannot be greater than 1, l/fe C; I/f; and, if elf < 1, I/fe > llf, 
which is itself supposed to be greater than 0. So, if these condi- 
tions were fulfilled, I/fe would be greater than a certain magnitude 
which is itself greater than 0. The next question then is: Can we 
find a set of facts, f, and a set of facts, e, such that l/f > 0, 
e/lf = 1, and e/f < 1 ? 

It seems to me that there is at least one fact which gives I a 
faint probability by analogy. We do know that we can actually 
construct out of simple parts of the same nature complicated 
structures which behave in very different ways, e.g., watches, 
motor-cars, gramophones, etc. The differences in observable 
behaviour are here known to be due simply to differences in 
arrangement of materials having the same properties; and these 
materials, and the structures formed of them, are parts of 
the material world. Relatively to this fact it does seem to 
me that there is a finite probability that the variety of 
material nature at any rate, should arise in the same way. 
Hence, if f denotes this fact about artificial machines, I should 
say that l/f > 0. 

Next, it is certain that there is a great deal of recurrence and 
repetition in nature; and that, up to the present, the more we have 
looked for it the more we have found it, even when at first sight 
there seemed little trace of it. I have dealt with this point 
in detail in my second article on Induction and Probability in 
Mind, Vol. XXIX, 1920. Now, if the Principle of Limited 
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Variety were true, there would be recurrence and repetition in 
nature; whilst if it were not, there is very little reason to expect 
that there would be. Hence, if e be this empirical fact, it seems 
evident that e/lf 1 and elf < 1. Consequently, there are facts 
f and e which fulfil the required conditions, and therefore there are 
factsf and e such that llfe is greater than a certain number which 
is greater than 0. 

Finally, we have to apply this result to the question of the 
antecedent probability of any proposed generalization g. 

By the Rule of Expansion g .--: g g. v . gi 
By the Principle of Equivalence g/fe = (gl)/fe + (gl)/fe 

By the Conjunctive Principle = (I/fe) (g/lfe) + (life) 

(g/lfe) 

Whence glfe > (lIfe) (g/lfe). 

Now gllfe is certainly not less than g/l, for the addition of the 
two facts f and e certainly does not reduce the probability that g 
shall be true, given that the Principle of Limited Variety is true. 
Hence g/fe > (I/fe) (g9l). 

But g/l is greater than a certain number r, which is itself 
greater than 0; and llfe is greater than a certain number y (viz., 
I/f) which is itself greater than 0. Hence g/fe > r, which is 
greater than 0. 

We see then that any generalization about the material 
world has a finite initial probability, relative to the known 
facts that we can construct a variety of differently acting 
machines from similar materials and that there is a great 
deal of repetition and regularity in the material world; and 
this initial probability will increase as we find more regularity 
and repetition. 

Thus a more or less satisfactory answer can be made to the 
Epistcmic Question, so long as we confine ourselves to inductive 
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arguments about the material world. But, so far as I can see, 
we have no ground whatever to trust inductive generalizations 
about mental phenomena; for here there are no known facts 
analogous to f, the fact that we can construct machines of the 
same materials to act in different ways. 

(8) SUMMARY OF CONCLUSIONS. 

Every inductive argument presupposes, beside the general 
principles of formal logic and of probability, certain assumptions 
about equiprobability, and what I have called in (3) the Funda- 
mental Causal Premise. If it is to establish a high probability, 
it requires in addition the assumption that " loading " in favour 
of a certain one alternative is antecedently highly probable. In 
the case of induction applied to things and events in nature, 
these conditions will not be fulfilled unless nature has a certain 
particular kind of structure, which may be expressed by saying 
that it answers to the Principle of Limited Variety. We stated 
this principle in terms of the notion of generating factors, and 
deduced its consequences, first on the assumption that plurality 
of generators is excluded, and then on the assumption that it is 
admitted. We also stated the conditions which tend to strengthen 
or weaken the antecedent probability of a generalization on the 
assumption that nature is subject to the Principle of Limited 
Variety, and we gave certain tests for judging whether a given 
generalization does or does not fulfil these conditions. Then we 
showed that the notion of generators, though highly convenient, 
is not essential to the statement of the Principle of Limited 
Variety. The actual existence of generators may be left an open 
question, and the fundamental notion may be taken to be that of 
coherent sets of characteristics related to each other in certain 
ways. We pointed out that, even on the assumption of the 
Principle of Limited Variety, only crude generalizations connecting 
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determinables can be established by induction. To establish 
functional laws further assumptions about nature are needed. 
Finally, we said that the Principle of Limited Variety is neither 
intuitively nor demonstratively certain. But there are two 
known facts about the material world which are so related to it 
that the antecedent probability of any proposed generalization 
about material phenomena with respect to these two facts is 
greater than a certain number which is greater than 0. Lastly 
we saw that the same argument does not apply to inductive 
generalizations about mental phenomena. So that, with our 
present knowledge, we have no good reason to attach any great 
weight to the conclusions of inductive argument on these 
subjects. 
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